무산소 조건에서 NAD+의 재생성
NAD+를 재생성하는 한 가지 방법은 피루브산을 환원시키는 것이다.
젖산 발효라고 불리는 과정에서 피루브산은 젖산으로 환원되고, 이 과정에서 NADH가 NAD+로 산화된다.
피루브산 + NADH + H+ → 젖산 + NAD+
젖산 발효는 요구르트를 만드는 데 이용되는(젖산은 우유를 응고시킨다) 세균에서 일어난다. 또한 젖산 발효는 저산소 상태(또는 부분적으로 혐기성 상태)인 동물에서 일어나는데, 예를 들면 산소가 부족한 근육에서 발견된다. 많은 조직에서 젖산 발효는 에너지 생성을 위한 최후의 수단이다. 대부분의 동물 조직은 혐기성 조건을 오래 견디지 못한다.
효모와 같은 일부 생물은 에탄올 발효라고 불리는 과정에서 NADH를 NAD+로 전환시킨다. 에탄올 발효에서 피루브산은 먼저 아세트알데하이드와 이산화탄소로 변환된 다음 에탄올로 전환된다.
젖산 발효와 에탄올 발효는 산소가 없을 때 일어날 수 있다. 이러한 혐기성 발효는 많은 단세포 생물이 유일한 에너지 공급원으로 해당과정을 사용할 수 있게 한다.
무산소 조건에서 NAD+의 재생성은 척추동물에서 짧고 격렬한 운동을 하는 동안 에너지 생성의 효과적인 수단이 된다. 사람은 단거리 달리기 같은 격렬한 운동을 1분 이상 지속하기 힘들다. 물개, 고래와 같은 잠수 동물들은 운동 강도가 낮으면 매우 오랜 시간 동안 근육 활동을 유지할 수 있다. 산소가 부족한 조건에서 NADH의 전자를 피루브산이 받아서 피루브산이 젖산으로 환원되고 NADH가 NAD+로 산화되어 NAD+를 보충한다. 젖산 발효에서 포도당 1분 자당 2 분자의 ATP가 생성된다. 젖산 발효를 통해 ATP를 생성하는 속도는 산화적 인산화를 통해 ATP를 생성하는 속도의 약 100배이다. H+가 근육에 축적되면 세포질의 pH가 낮아져서 결국 해당 과정에 관여하는 효소를 억제하게 된다.
격렬한 운동을 하는 동안 근육의 타는 듯한 느낌은 산소 호흡으로는 더 이상 근육의 에너지 요구량을 따라갈 수 없을 때 산소 호흡에서 발효로 전환되는 동안 H+의 방출로 인한 것일 수도 있다. 이러한 H+는 젖산에서 일부 생성된다. 낮은 산소 조건에서 신체는 ATP 생성의 효율성은 떨어지지만, ATP 생성 속도는 빠른 방식을 취한다. 대기 중의 산소의 농도가 높아지기 전인 20억년~25억년 전에 발효는 생물에서 에너지를 생산하는 주요 방식이라 생각되어 왔고, 따라서 혐기성 조건에서 NAD+를 재생성하는 방식이 호기성 조건에서 NAD+를 재생성하는 방식보다 더 오래되었음을 나타낸다.
포유류의 간은 호기성 조건에서 젖산을 피루브산으로 전환시켜 과잉의 젖산을 제거한다(코리 회로 참조).
피루브산의 젖산으로의 발효는 때때로 "혐기성 해당과정"이라고도 불리지만, 해당 과정은 산소의 유무에 관계없이 피루브산의 생성으로 끝난다.
젖산 발효에서 NADH는 2개의 전자를 피루브산에게 주고 산화되고, 에탄올 발효에서 NADH는 2개의 전자를 아세트알데하이드에게 주고 산화된다. 그러나, 혐기성 세균은 세포 호흡에서 최종 전자 수용체로 다양한 화합물을 사용한다. 이러한 화합물에는 질산, 아질산 같은 질소화합물, 황산, 아황산, 이산화황, 황 같은 황화합물, 이산화탄소, 철 화합물, 망간 화합물, 코발트 화합물, 우라늄화합물 등이 있다.